

Dual SPDT Switch

ADG436

FEATURES

44 V supply maximum ratings V_{SS} to V_{DD} analog signal range Low on resistance (12 Ω typ) Low ΔR_{ON} (3 Ω max) Low Ron match (2.5 Ω max) Low power dissipation Fast switching times

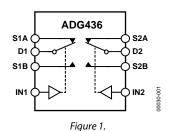
 $t_{ON} < 175 \text{ ns}$

toff < 145 ns

Low leakage currents (5 nA max) Low charge injection (10 pC) **Break-before-make switching action**

APPLICATIONS

Audio and video switching **Battery-powered systems Test equipment Communications systems**


GENERAL DESCRIPTION

The ADG436 is a monolithic CMOS device comprising two independently selectable SPDT switches. It is designed on an LC²MOS process, which provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range, ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the part suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

Each switch conducts equally well in both directions when on and has an input signal range which extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- Extended signal range. The ADG436 is fabricated on an enhanced LC²MOS process, giving an increased signal range that extends to the supply rails.
- Low power dissipation.
- 3. Low Ron.
- Single-supply operation. For applications where the analog signal is unipolar, the ADG436 can be operated from a single rail power supply.

ADG436

TABLE OF CONTENTS

Specifications	. 3
Dual Supply	. 3
Single Supply	. 4
Absolute Maximum Ratings	. 5
ESD Caution	. 5
Pin Configuration and Function Descriptions	. 6
Terminology	. 7

Typical Performance Characteristics8
Test Circuits
Applications Information
ADG436 Supply Voltages
Power-Supply Sequencing11
Outline Dimensions
Ordering Guide

REVISION HISTORY

3/05—Rev. A to Rev. B

Updated Format	Universal
Changes to Specifications Tables	3
Changes to Figure 11	8
Updated Outline Dimensions	12
Changes to Ordering Guide	12

11/98—Rev. 0 to Rev. A

1/96—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY¹

 V_{DD} = +15 V, V_{SS} = -15 V, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/ Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
Ron	12		Ωtyp	$V_D = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
		25	Ω max	
ΔR_{ON}	1		Ωtyp	$V_D = -5 \text{ V}, 5 \text{ V}, I_S = -10 \text{ mA}$
		3	Ω max	
RonMatch	1		Ωtyp	$V_D = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
		2.5	Ω max	
LEAKAGE CURRENTS				$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source OFF Leakage Is (OFF)	±0.005		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$
	±0.25	±5	nA max	Figure 13
Channel ON Leakage ID, IS (ON)	±0.05		nA typ	$V_S = V_D = \pm 15.5 \text{ V}$
-	±0.4	±5	nA max	Figure 14
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}		±0.005	μA typ	$V_{IN} = 0 \text{ V or } V_{DD}$
		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²				
t _{on}	70		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		125	ns max	V _s =±10 V; Figure 15
t _{off}	60		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		120	ns max	$V_S = \pm 10 \text{ V}$; Figure 15
Break-Before-Make Delay, t _{OPEN}	10		ns min	$R_L = 300 \Omega$, $C_L = 35 pF$;
				$V_S = +5 \text{ V}$; Figure 16
Charge Injection	10		pC typ	$V_D = 0 \text{ V}, R_D = 0 \Omega, C_L = 10 \text{ nF};$
				Figure 17
OFF Isolation	72		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				$V_S = 2.3 \text{ V rms}$, Figure 18
Channel-to-Channel Crosstalk	90		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				V _S = 2.3 V rms, Figure 19
Cs (OFF)	13		pF typ	_
C_D , C_S (ON)	49		pF typ	
POWER REQUIREMENTS				
l _{DD}	0.05		mA typ	Digital inputs = 0 V or 5 V
		0.35	mA max	
I _{SS}	0.01		μA typ	
	1	5	μA max	
V_{DD}/V_{SS}		±3/±20	V min/V max	$ V_{DD} = V_{SS} $

 $^{^1}$ Temperature range is as follows: B version, -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design; not subject to production test.

ADG436

SINGLE SUPPLY¹

 $V_{DD} = 12 \text{ V}$, $V_{SS} = 0 \text{ V}$, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/ Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
Ron	20		Ωtyp	$V_D = 1 \text{ V}, 10 \text{ V}, I_S = -1 \text{ mA}$
		40	Ω max	
RonMatch		2.5	Ω max	
LEAKAGE CURRENTS				V _{DD} = 13.2 V
Source OFF Leakage Is (OFF)	±0.005		nA typ	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$
	±0.25	±5	nA max	Figure 13
Channel ON Leakage ID, Is (ON)	±0.05		nA typ	$V_S = V_D = 12.2 \text{ V/1 V}$
	±4	±5	nA max	Figure 14
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}		±0.005	μA typ	$V_{IN} = 0 \text{ V or } V_{DD}$
		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²				
ton	100		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		200	ns max	V _S = 8 V; Figure 15
t _{OFF}	90		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		180	ns max	V _S = 8 V; Figure 15
Break-Before-Make Delay, t _{OPEN}	10		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
				V _S = 5 V; Figure 16
Charge Injection	10		pC typ	$V_D = 6 \text{ V}, R_D = 0 \Omega$, $C_L = 10 \text{ nF}$; Figure 17
OFF Isolation	72		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				$V_s = 1.15 \text{ V rms}$; Figure 18
Channel-to-Channel Crosstalk	90		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				V _s = 1.15 V rms, Figure 19
C _s (OFF)	22		pF typ	
C_D , C_S (ON)	46		pF typ	
POWER REQUIREMENTS				V _{DD} = 13.5 V
I _{DD}	0.05		mA typ	Digital inputs = 0 V or 5 V
		0.35	mA max	
V_{DD}		+3/+30	V min/V max	

 $^{^1}$ Temperature range is as follows: B version, -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C unless otherwise noted.

Table 3.

1 4010 01		
Parameter	Rating	
V _{DD} to V _{SS}	+44 V	
V_{DD} to GND	−0.3 V to +30 V	
V _{ss} to GND	+0.3 V to -30 V	
Analog, Digital Inputs ¹	V_{SS} – 2 V to V_{DD} + 2V or 20 mA, whichever occurs first	
Continuous Current, S or D	20 mA	
Peak Current, S or D (pulsed at 1 ms, 10% Duty Cycle max)	40 mA	
Operating Temperature Range		
Industrial (B Version)	-40°C to +85°C	
Storage Temperature Range	−65°C to +125°C	
Junction Temperature	150°C	
θ_{JA} , Thermal Impedance		
PDIP Package	117°C/W	
SOIC Package	77°C/W	
Lead Temperature, Soldering (10 sec)	260°C	
Lead Temperature, Soldering		
Vapor Phase (60 sec)	215°C	
Infrared (15 sec)	220°C	

 $^{^{\}rm 1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

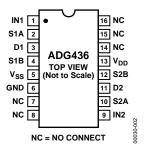


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Descriptions
1, 9	IN1, IN2	Logic Control Input.
2, 4, 10, 12	S1A, S1B, S2A, S2B	Source Terminal. Can be an input or output.
3, 11		Drain Terminal. C be an input or output.
5	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to ground.
6	GND	Ground (0 V) Reference.
7, 8, 14, 15, 16	NC	No Connect.
13	V_{DD}	Most Positive Power Supply Potential.

TERMINOLOGY

Table 6.

Mnemonic	Descriptions
	Descriptions
Ron	Ohmic resistance between D and S.
ΔR_{ON}	Ron variation due to a change in the analog input voltage with a constant load current.
RonMatch	Difference between the R _{ON} of any two channels.
I _s (OFF)	Source leakage current with the switch off.
I _D , I _S (ON)	Channel leakage current with the switch on.
$V_D(V_S)$	Analog voltage on terminals D, S.
C _S (OFF)	OFF switch source capacitance.
C_D , C_S (ON)	ON switch capacitance.
ton	Delay between applying the digital control input and the output switching on.
t _{OFF}	Delay between applying the digital control input and the output switching off.
topen	Break-before-make delay when switches are configured as a multiplexer.
V_{INL}	Maximum input voltage for Logic 0.
V _{INH}	Minimum input voltage for Logic 1.
I _{INL} (I _{INH})	Input current of the digital input.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an OFF switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
I_{DD}	Positive supply current.
Iss	Negative supply current.

TYPICAL PERFORMANCE CHARACTERISTICS

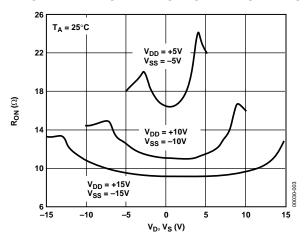


Figure 3. R_{ON} as a Function of V_D (V_S): Dual Supply

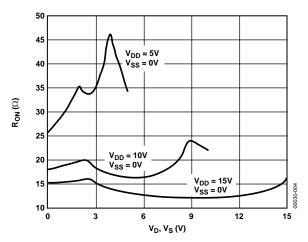


Figure 4. R_{ON} as a Function of V_D (V_S): Single Power Supply

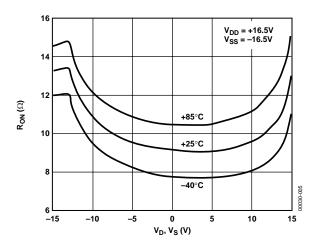


Figure 5. R_{ON} as a Function of V_D (V_s) for Different Temperatures: Dual Supply

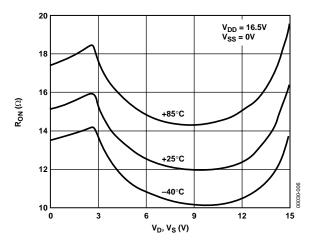


Figure 6. R_{ON} as a Function of V_D (V_s) for Different Temperatures: Single Supply

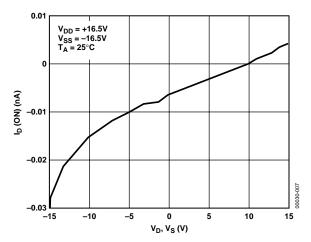


Figure 7. I_D (ON) Leakage Current as a Function of V_D (V_S): Dual Supply

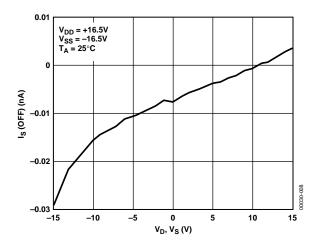


Figure 8. Is (OFF) Leakage Current as a Function of V_D (V_S): Dual Supply

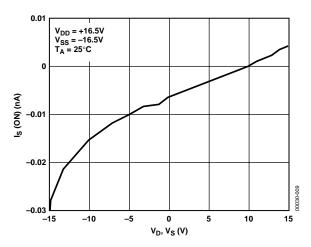


Figure 9. IS (ON) Leakage Current as a Function of V_D (V_S): Dual Supply

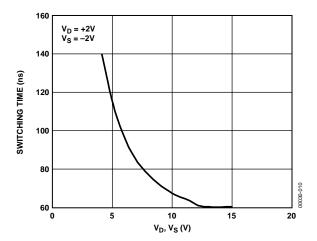


Figure 10. Switching Time as a Function of V_D (V_S): Dual Supply

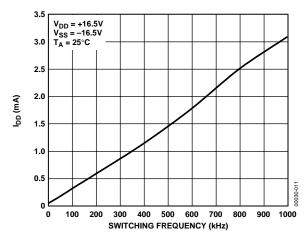


Figure 11. I_{DD} as a Function of Switching Frequency: Dual Supply

TEST CIRCUITS

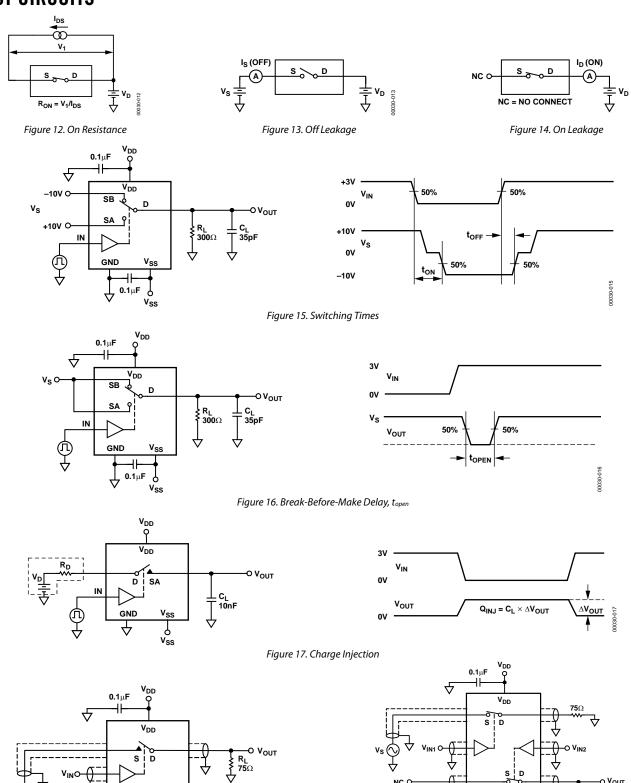
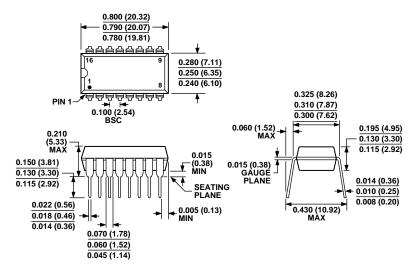


Figure 18. Off Isolation Figure 19. Channel-to Channel Crosstalk

GND

 $\begin{array}{l} \textbf{CHANNEL-TO-CHANNEL} \\ \textbf{CROSSTALK} \\ \textbf{20} \times \textbf{LOG} \ |\textbf{V_S/V_{OUT}}| \end{array}$

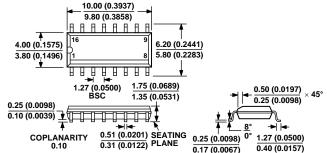
APPLICATIONS INFORMATION


ADG436 SUPPLY VOLTAGES

The ADG436 can operate from a dual or single supply. V_{SS} should be connected to GND when operating with a single supply. When using a dual supply, the ADG436 can also operate with unbalanced supplies, for example $V_{DD}=20~V$ and $V_{SS}=-5~V$. The only restrictions are that V_{DD} to GND must not exceed 30 V, V_{SS} to GND must not drop below -30~V, and V_{DD} to V_{SS} must not exceed +44~V. It is important to remember that the ADG436 supply voltage directly affects the input signal range, the switch on resistance and the switching times of the part. The effects of the power supplies on these characteristics can be clearly seen from the Typical Performance Characteristics curves.

POWER-SUPPLY SEQUENCING

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond those listed in the Absolute Maximum Ratings. Always sequence $V_{\rm DD}$ on first followed by $V_{\rm SS}$ and the logic signals. An external signal can then be safely presented to the source or drain of the switch.


OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-AB

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 20. 16-Lead Plastic Dual In-Line Package [PDIP] (N-16) Dimensions are shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-012-AC

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 21. 16-Lead Narrow Body Standard Small Outline Package [SOIC] (R-16)

Dimensions are shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option		
ADG436BN	-40°C to +85°C	16-Lead PDIP	N-16		
ADG436BNZ ¹	-40°C to +85°C	16-Lead PDIP	N-16		
ADG436BR	-40°C to +85°C	16-Lead 0.15" Narrow Body SOIC	R-16		
ADG436BR-REEL	-40°C to +85°C	16-Lead 0.15" Narrow Body SOIC	R-16		
ADG436BRZ	-40°C to +85°C	16-Lead 0.15" Narrow Body SOIC	R-16		
ADG436BRZ-REEL	-40°C to +85°C	16-Lead 0.15" Narrow Body SOIC	R-16		

 $^{^{1}}$ Z = Pb-free part.

